+2 votes
in Class 11 by kratos

Prove that:

(i) sin 5π/18 – cos 4π/9 = √3 sin π/9

(ii) cos π/12 – sin π/12 = 1/√2

(iii) sin 80° – cos 70° = cos 50°

(iv) sin 51° + cos 81° = cos 21°

1 Answer

+2 votes
by kratos
 
Best answer

(i) Given assin 5π/18 – cos 4π/9 = √3 sin π/9

Let us consider the LHS

sin 5π/18 – cos 4π/9 = sin 5π/18 – sin (π/2 – 4π/9) (since, cos A = sin (90° – A))

= sin 5π/18 – sin (9π – 8π)/18

= sin 5π/18 – sin π/18

On using the formula,

sin A – sin B = 2 cos (A + B)/2 sin (A - B)/2

= 2 cos (6π/36) sin (4π/36)

= 2 cos π/6 sin π/9

= 2 cos 30° sin π/9

= 2 × √3/2 × sin π/9

= √3 sin π/9

= RHS

Thus proved.

(ii) cos π/12 – sin π/12 = 1/√2

Let us consider the LHS

cos π/12 – sin π/12 = sin (π/2 – π/12) – sin π/12 (since, cos A = sin(90° – A))

= sin (6π – 5π)/12 – sin π/12

= sin 5π/12 – sin π/12

On using the formula,

sin A – sin B = 2 cos (A + B)/2 sin (A - B)/2

= 2 cos (6π/24) sin (4π/24)

= 2 cos π/4 sin π/6

= 2 cos 45° sin 30°

= 2 × 1/√2 × 1/2

= 1/√2

= RHS

Thus proved.

(iii)sin 80° – cos 70° = cos 50°

sin 80° = cos 50° + cos 70°

Therefore, now let us consider the RHS

cos 50° + cos 70°

On using the formula,

cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

cos 50° + cos 70° = 2 cos (50° + 70°)/2 cos (50° – 70°)/2

= 2 cos 120°/2 cos (-20°)/2

= 2 cos 60° cos (-10°)

= 2 × 1/2 × cos 10° (since, cos (-A) = cos A)

= cos 10°

= cos (90° – 80°)

= sin 80° (since, cos (90° – A) = sin A)

= LHS

Thus proved.

(iv) Given as sin 51° + cos 81° = cos 21°

Let us consider the LHS

sin 51° + cos 81° = sin 51° + sin (90° – 81°)

= sin 51° + sin 9° (since, sin (90° – A) = cos A)

On using the formula,

sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2

sin 51° + sin 9° = 2 sin (51° + 9°)/2 cos (51° – 9°)/2

= 2 sin 60°/2 cos 42°/2

= 2 sin 30° cos 21°

= 2 × 1/2 × cos 21°

= cos 21°

= RHS

Thus proved.

...